
STATGR5242
ADVANCED MACHINE LEARNING

FINAL PROJECT REPORT

LINJUN HUANG (UNI: LH2985)
JIARUI CHANG (UNI: JC5268)

MUBAI LIU (UNI: ML4407)
YI ZHANG (UNI: YZ3681)

Columbia University
Department of Statistics

Contents

1 Introduction 2

1.1 Background Information . 2

1.2 Related Works . 2

1.3 Improvements and Adjustments . 3

2 Method 3

2.1 Model . 3

2.1.1 VGG Neural Network . 3

2.1.2 Mobilenet model . 3

2.2 Loss Function . 4

2.2.1 Content Loss . 4

2.2.2 Style Loss . 4

2.2.3 Variation Loss . 4

2.3 Prepossessing Image Noise Elimination . 5

3 Result 6

3.1 Output Image at Each Epoch Under Different Initialization 6

3.2 Denoise Implementation . 6

3.3 Content Layer Selection . 7

3.4 Different α, β in the Setting . 7

3.5 Log Loss Plot Under Different Initialization . 8

3.6 Mobilenet Results . 10

4 Discussion 10

4.1 Tuning Parameters . 10

4.1.1 Initialization . 10

4.1.2 Convolutional Layer Selection . 10

4.1.3 Denoise Method Implementation . 10

4.1.4 Value of Loss Weights (α, β) . 11

4.1.5 Optimizer . 11

4.2 Mobilenet . 11

1

GR5242

Linjun Huang
lh2985@columbia.edu

Jiarui Chang
jc5268@columbia.edu

Mubai Liu
ml4407@columbia.edu

Yi Zhang
yz3681@columbia.edu

Abstract

The research of style transfer expands a lot in recent years due to the evolution
of Convolutional Neural Networks. In this report, we build a neural style transfer
network based on a pre-trained VGG-19 model that will capture the style and
content from the image. Choosing some specific pre-trained layer from the CNN
model and then applying gradient descent, the blending of image style and image
content makes this neural network an artist. There are three major improvements
based on the current image style transfer paper [1]. The first idea developed from
the paper is utilizing a blurred version of the content image as the initial inputs.
Secondly, we preprocessed images before taking them into the different choice of
CNN layers from the paper. And lastly, the noise of the output image has been
optimized.

1 Introduction

1.1 Background Information

In this project, we are going to use a pre-trained image classification network (VGG-19) to compose
images in the style of another image, this process is known as neural style transfer. Neural style
transfer is an optimization technique used to take three images: a content image, a style reference
image (such as an artwork by a famous painter), and the input image you want to style — and blend
them together such that the input image is transformed to look like the content image with “painted”
in the style of the style image. To sum up, the key point is we won’t have a traditional so-called
"accuracy" in the process. We’ll take the base input image, a content image that we want to match,
and the style image that we want to match to put them together. By minimizing the content and style
distances (losses) with back-propagation, we create a new and perceptually meaningful image.

1.2 Related Works

A novel structure was introduced by the paper in 2016 using VGG-16/VGG-19 Convolutional Neural
Networks to capture features and contents from images. As it has mentioned in the paper, the
perceptual aspects of "style" are conceptually hard to tell for non-artists, it might be meaningful to
analyze the CNN representation for each layer [1]. In a model like VGG-19, there are a total number
of 16 different Convolutional layers with each layer getting distinct information from input pictures.
A logical implementation would be through utilizing different layers will produce various types of
results to fulfill different requirements. For the coding perspective, we take a tutorial page [4] from
the Tensorflow and build upon it by changing its parts that is not our interests or modify the body part
of the code. But it is still based on the paper that was introduced in 2016 mentioned above.

1.3 Improvements and Adjustments

Due to the curiosity of how would the output image changes if we modify the initial input image,
we decide to implement some adjustment that is not mentioned in the paper. For the purpose of
comparison, we test three unique starting images: 1. white noise image; 2. content image; 3. blurred
version of content image. And eventually, we would like to test out how the initial setting could affect
the final outcomes and which initial setting outperforms the others.

Another aspect of our model is the weight for each part of the loss. By setting various values of
weight, we can figure out how much impact of the weights will produce on the final output. In that
way, we can adjust our own weight to fit our own requirements. (i.e. appear to have more original
content or more similar style compare with style image) From the Tensorflow tutorial [4], besides the
content loss and style loss, we also added total variation loss to the total loss. Total variation loss
could help with making the outcome image become smoother.

It is trivial to see that there are many noise points appear on our final result image based on the
procedure from the 2016’s paper. A new way of reducing such effect would be adding a blurring
process to remove the noise points after each epoch. But this may lose some information in the graph,
so in order to retain the resolution, a sharpening process is also included right after the blurring effect.
We believe this set of the procedure will work very well for our neural transfer structure and the
results are shown in the results section.

The final idea that comes to mind is we’d like to try other CNN models to see if it could make an
improvement or not. We’ve decided to implement MobileNet as our second choice of CNN model. It
also has a similar structure overall as mentioned above to include the variation loss as well as the
noise reduction option. We’ll discuss the results in the last section.

2 Method

Generally speaking, our starting point is [1]. We have done three major improvements based on [1].
Besides the initial image is set to be white noise or original content image, we introduce a blurred
version of the content image as the initial image. It has less bias to the content image compare to
staring with original content image. Also, its loss converge much faster than starting with the white
noise. Secondly, what we have done in advance is to do some prepossessing step on both style and
contact image, change the layer for gradient decent to see the difference of final output. Looking
deep inside of how the weight and layer can affect the final result. Lastly, we de-noised the output
image via blurring and sharpening process after each epoch.

2.1 Model

We used two different model VGG-19 model and mobilenet model to compare the speed of conver-
gence for loss function.

2.1.1 VGG Neural Network

We choose to use VGG-19 network for train step. VGG-19 contains 16 CNN layers with ReLU as
activation function. The model separate them with 5 different blocks and followed by a max pooling
layers in each block. In both [1] and [2], they choose block4Conv2 as content representation, and
block1Conv1, block2Conv1, block3Conv1, block4Conv1 and block5Conv1 as the representation for
style image. We first follow that standard but find out some different types of content or style may
performs really bad, so we change the choice of layers, and able to achieve a more flexible output, we
will discuss this more in the result part.

2.1.2 Mobilenet model

The basic idea for VGG-19 is using CNN layers with ReLU activation function to capture various
parts information from the original image. The differences between these two models are Mobilenet
model is composed by two types of special layers named depthwise convolutional filter and pointwise
convolutional layer. From [5], the main propose for depthwise filter is to cut the dimension down to 1,
use a single filter for original input. However it only do the filter part, we need connect all dimensions

3

to get the features from image. So depthwise filter usually followed by a pointwise layer i.e. 1*1
convolution.

2.2 Loss Function

Our loss function is composed by three parts, content loss, style loss and variation loss. Content
loss and style loss are multiplied by the weight we set ahead and divided by the number of layer we
choose. Moreover, we add a total variation loss, which represent the sum of the absolute differences
for neighborhood pixel values for the input. Adding this loss could make the output graph looks more
smoother. At last the loss function comes out to be

L = α ∗ lstyle + β ∗ lcontent + lvariation

We can get totally different image by changing the value of α and β.

2.2.1 Content Loss

Content loss is calculated by using the most direct way – calculating the mean squared loss between
the original content image and generated image.

Lcontent =
α

l

∑
l

∑
i,j

(pcontenti,j − pgeneratedi,j)2

In this formula, pcontenti,j and pgeneratedi,j represent the pixel values for content and generated image. l
represents the number of layer we chosen for content loss. By implementing this, we can get how
much different between the content image and output image.

2.2.2 Style Loss

Style loss is little bit difference from content. We introduce the gram matrix for loss calculation.

Glij =
∑
k

F likF
l
jk

Gram matrix is based on dot product, due to the fact that dot product can reflect the similarity between
two vectors or matrix. Applying this idea to image, the larger the result is, the more similar these two
vectors are. And again similar to the content loss, we calculate the mean squared loss between the
gram matrix result for style part,

Lstyle =
β

l

∑
l

∑
i,j

(Gstyle,li,j −Ggenerated,li,j)2

And from this step we can capture the information about how much information we reserve by CNN
layers i.e. lines, pattern or texture from original style image.

2.2.3 Variation Loss

Variation loss is a regulation method used to eliminate the noise generate on the boundary. The
formula for variation loss is

Lvariation =

m∑
i

1

m
(p(i+1),j − pi,j)

2

Lvariation =

n∑
j

1

n
(pi,(j+1) − pi,j)

2

m, n represent the size of the image, the two functions shown above represent the horizontal and
vertical variation loss for a image. We can even add them up for to maintain the smoothness for the
output.

4

2.3 Prepossessing Image Noise Elimination

For the prepossessing part, we choose several ways to change the input image. Blurring, sharpening
and adjusting the contrast of the original content image. We have three starting images: 1. white
noise image; 2. content image; 3. blurred version of content image. We generate our white noise
image by randomly select value from normal distribution with mean 0 and variance 0.5. We also
generate the blurred version of the content image via a blurring process.

One of the idea we came up with is fitting the style image using calligraphy and ink painting. since
they only get black and white color, so we add an black and white transfer to our content image to
see what the outcome would be. Also, through each epoch, we force the output image to be black and
white.

The noise elimination part was very challenging since there are no paper discussed about this part.
It also plays a vital role on the final output images. We first used a blurring process to remove the
noise points after each epoch. However, we found out that the final outcome image might be too
blur if we only using the blurring process. In order to retain the resolution, we also introduce an
image sharpening process. To code up those two process is a very tough task for us. We spent lots of
time on familiarizing the structure of tensorflow image in order to write the blurring and sharpening
functions. The combination of those two process works very well so far on noise eliminating.

The intuition behind Gaussian blur is similar to the basic idea of convolational neural network, it
applies the Gaussian function to each pixel. Under 2 dimension We have

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2

By applying this formula to the pixel value we can generate concentric circles that are normally
distributed from the center. The value of each pixel is the weighted average of the surrounding
neighboring pixel values. The value of the center pixel has the largest Gaussian distribution value, so
it has the largest weight. As the neighboring pixels are farther away from the original pixel, their
weights become smaller and smaller.

The idea for sharpen has the opposite direction of Gaussian blur. It also uses the convolational
technique, different with Gaussian blur, this time we use a 3*3 matrix with a high value locate in the
center and surround by 8 negative values. In this way, we can decrease the correlation between the
central pixel and the pixel connect to it, i.e. we can make the image more obvious rather than smooth.
In our research, we do the sharpen step follows by blurring, it can perfectly eliminate noise point on
our output result.

Figure 1: Implementation

5

3 Result

3.1 Output Image at Each Epoch Under Different Initialization

Figure 2: each epoch result for white noise initialization

Figure 3: each epoch result for content initialization

Figure 4: each epoch result for content initialization

We set the number of epoch to be 7 and the number of iteration in one epoch to be 250 for the
white noise initialization and 100 for the content and blurred content initialization. The blurred
content initialization and the content initialization has almost the same pattern.The speed of learning
is initially very fast and slow down after the third epoch. Under the same setting, the white noise
initialization has a much slow learning speed.

3.2 Denoise Implementation

Figure 5: without implement denoise method Figure 6: implement denoise method

Figure 7: Denoise implementation

As shown above, after implementing the blurring and sharpening process after each epoch, the noise
in the final output image is successfully removed.

6

3.3 Content Layer Selection

Figure 8: content image NYC with style image star
Figure 9: using content layer block1 cov2 Figure 10: using content layer block2 cov2

Figure 11: using content layer block3 cov2 Figure 12: using content layer block4 cov2 Figure 13: using content layer block5 cov2

Figure 14: content layer selection

Through our experiment, similar to the result conduct by Justin Johnson[3], if the choosing layer is
closer to the first block the result tend to capture more original content including the shapes, colors,
object and structure for the input content image. On the contrary, if our choice is approach to the last
several layers, the result tend to capture more on the information about color and really limit amount
information from structure.

3.4 Different α, β in the Setting

Figure 15: alpha=0.01, beta = 0.1 Figure 16: alpha=0.1, beta = 0.1 Figure 17: alpha=1, beta = 0.1

Figure 18: Result for different alpha and beta

7

Figure 19: alpha=10, beta = 0.1 Figure 20: alpha=100, beta = 0.1 Figure 21: alpha=1000, beta = 0.1

Figure 22: Result for different alpha and beta

Described in [1], if the ratio of αβ is greater than one, the result image will have a strong bias toward
the content image. Conversely, it will have a bias toward the style image. The optimal values in
practice are α = 10, β = 0.1.

3.5 Log Loss Plot Under Different Initialization

The total loss decreases rapidly in the first three epoch for the content image and blurred content
image initialization settings. Under the same setting, the white noise initialization has a much
slower convergence speed. Due to the magnitude of the loss are very big, we use a log scaling of
the loss value. We implement the denoise method after each epoch. Comparing the log loss plot
without denoise method and with denoise method, the style loss jumps up after each epoch while the
variational loss jump down after each epoch. During the denoise process includes two part: blurring
and sharpening. We use the blurring method to eliminate the noise points in the image. To retain
the resolution of the image, we do a sharpen process. During the denoise process, the shapes in the
image are blurred and the lines around the shapes are cleared. The blurred shapes decrease the total
variational loss. Also, The lines in image increases the style loss since there are no line in the original
style image. This may be one of the reason that makes those jumps. In both cases, the blurred content
image initialization outperforms the other initialization settings. If the style image is less abstract
saying more realistic, then the content initialization will have the best performance.

Figure 23: white noise initialization Figure 24: content image initialization Figure 25: blur content image initialization

Figure 26: result images from log loss plot without denoise method

Figure 27: white noise initialization Figure 28: content image initialization Figure 29: blur content image initialization

Figure 30: result images from log loss plot using denoise method

8

Figure 31: log loss plot without using denoise method

Figure 32: log loss plot using denoise method

9

3.6 Mobilenet Results

Figure 33: result image from pretrained Mobilenet Model, usingα = 1, β = 100.

4 Discussion

We are using the Google GPU to generate the images from the content images and the style images.
If we extract one Convolutional layer from content image and five Convolutional layer from style
image via VGG-19 pretrained model, it takes 932 seconds for 10000 training steps. From pretrained
Mobilenet model, we use also use one layer as content representation and three layers as style
representation. It takes 102.5 seconds for 10000 training steps.

4.1 Tuning Parameters

4.1.1 Initialization

We studied three types of initialization: 1. white noise; 2. content image; 3. blurred content image.
Initially, from Figure 31, the second initialization has zero content loss at zero step and the third
initialization has zero variational loss and small content loss at zero step. The third initialization
setting both have a less bias toward the content compared to the second initialization setting. Also,
shown in Figure 31 and Figure 32, the blurred content image initialization setting has the fastest
speed of convergence. If the style image is less abstract saying more realistic, then the content
initialization setting will have the best performance. Although the white noise initialization has no
bias toward the content image, it takes too many step to converge to a meaningful image.

4.1.2 Convolutional Layer Selection

In [1] Section 3.1, the author uses ’block4 conv2’ as the content representation layer and ’block1
conv1’, ’block2 conv1’, ’block3 conv1’,’block4 conv1’,’block5 conv1’ as the style representation
layers. According to our observation, the ’block1 conv2’ could between represent the color and the
structures in the content image compared to the ’block4 conv2’ as shown on the Figure 14. Also, we
found out that the ’block1 conv1’ and ’block5 conv1’ does not convey style information so we drop
them to increase our training speed.

We are using the ’block1 conv2’ as the content representation layer and ’block2 conv1’, ’block3
conv1’,’block4 conv1” as the style representation layers. We set the weights to the content representa-
tion layer as 104 and the weights to the style representation layer as 10−3 to make the convergence
fast.

4.1.3 Denoise Method Implementation

Our denoise method successfully remove the random noise points generated by the gradient. It makes
the output image smoother and looks better.

10

4.1.4 Value of Loss Weights (α, β)

In the original work [1], the authors mentioned the trade off between the weight of the content loss
and the weight of the style loss. Depending on the expectation of the output image, a bias toward the
content image could preserved the shape and color of the original content image while it also leave
some room for the the style to be make. In general, one can adjust the ratio between α and β between
content and style to create different types of images. There is no unique or right answer.

4.1.5 Optimizer

We used the Adam optimizer and it can be replaced by L-BFGS-B mentioned in [1]. We could also
try different learning rate or different optimizer for further studying.

4.2 Mobilenet

From pretrained Mobilenet model we use ’conv dw 2 relu’ as content representation layer and ’conv
pw 1 relu’, ’conv dw 5 relu’, and ’conv dw 7 relu’ as style representation, we could get a similiar
but slight different result image compared to the pretrained VGG-19 model. Apparently, the training
speed of using Mobilenet is much faster than using VGG-19.

11

References

[1] L. A. Gatys, A. S. Ecker and M. Bethge,(2016) 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR): Image Style Transfer Using Convolutional Neural Networks, Las Vegas, NV, pp. 2414-2423,
doi: 10.1109/CVPR.2016.265.

[2] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, Aaron Hertzmann, Eli Shechtman. (2017) Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR): Controlling Perceptual Factors
in Neural Style Transfer, pp. 3985-3993, University of Tubingen

[3] Justin Johnson, Alexandre Alahi and Li Fei-Fei. (2016) European Conference on Computer Vision: Perceptual
Losses for Real-Time Style Transfer and Super-Resolution

[4] https://www.tensorflow.org/tutorials/generative/style_transfer

[5] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto and Hartwig. (2017) MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications

Appendix

Code Github Link

https://github.com/bingguJ/5242_project

12

	Introduction
	Background Information
	Related Works
	Improvements and Adjustments

	Method
	Model
	VGG Neural Network
	Mobilenet model

	Loss Function
	Content Loss
	Style Loss
	Variation Loss

	Prepossessing Image Noise Elimination

	Result
	Output Image at Each Epoch Under Different Initialization
	Denoise Implementation
	Content Layer Selection
	Different , in the Setting
	Log Loss Plot Under Different Initialization
	Mobilenet Results

	Discussion
	Tuning Parameters
	Initialization
	Convolutional Layer Selection
	Denoise Method Implementation
	Value of Loss Weights (,)
	Optimizer

	Mobilenet

